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1 Summary

During the past two years the investigators have been able to develop a computer code which,
on the basis of some preliminary experiments, has turned out to be quite competitive with a well
established code. The algorithmic development phase of the research has led to several useful
results. An eighth order method, which has second, fourth and sixth order methods embedded
in it has been developed. The method possesses some of the best features of implicit Runge-
Kutta and Gap schemes. A multiderivative generalization of the above schemes has also been
realized. A sparse factorization for quasi-Newton type methods has been obtained. Algorithms
for solving combined systems of linear and non-linear algebraic equations and matrix splitting
have also been developed. A new algorithm has been found for updating the sparse LDU
factorization of the approximation to the Jacobian of the system of equations. This method
is relatively more efficient than the currently available methods. A practical updating method
has been obtained that is in the Broyden family of updates and is in most cases better than
the BFGS method. Some effort wasdirected towards improvement in the stability properties
of Boundary Value Runge Kutta((BVRK ?methods.

Some of our results are being used for the computer simulation of kidney function at the
Cornell Medical School in a collaborative research in which the Principal Investigator is involved.

-p..-..

2 Report

In [11, we consider a system of differential equations

y'(x) f f(x,y) , x E [a,b]

with two-point boundary conditions

g(y(a),y(b)) = 0.

For the subinterval [xo, z], the proposed numerical methods can be written as

i (1 - Oi)Yo ± Otyl + h iaif(xo +cjh, j)
j=1

Yi = yo + h bf(xo + ch, s) L_

with
,j= 0 Vj i.

We will call them Boundary Value Runge Kutta (BVRK) processes. These finite difference
schemes combine features of both Runge-Kutta processes and Gap schemes. Just like Runge- ,
Kutta processes, these methods do not require derivatives of function f. Also, just like Gap or
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schemes. BVRK methods use information available at both end-points of a subinterval. No
information available outside a subinterval is used for approximating the ODE in that subin-
terval. Because of symmetry, the asymptotic error expansion for the numerical solution has
only even powers of mesh-size h. It is possible to develop A-stable BVRK processes, which is
desirable. We have developed some techniques which can be used to derive BVRK processes.
A quasi-Newton method for the solution of the systems of nonlinear equations arising from
the use of these methods, has also been developed. We have derived an eighth order BVRK
method which has second, fourth, and sixth embedded in it. We have developed a technique
which takes advantage of this natural embedding of methods for generating asymptotically
equidistributing grids, and for estimating the error in the numerical solution. We have devel-
oped a general purpose adaptive solver based on these ideas. In the future, we hope to make
this code compatible with PASVA3 (which is a popular general purpose adaptive code) so that
depending on various conditions the final program will either use BVRK processes or Deferred
correction.

In 121, we consider a multiderivative generalization of BVRK processes. These methods
use fewer derivatives of function f to yield results which are the same as the results for Gap
schemes. Hence, these processes will be preferred over Gap schemes if the higher order analytic
derivatives are not available.

A general description of sparsity based algorithms that use structural information in handling
the model equations is given in 131. The primary focus is on splitting of equations and variables
into two subsets: one large but relatively ecsy to solve, called the non-basic subset, and the

,A, other small but difficult to handle, called the basic subset. The non-basic subset is then solved
more often than the difficult basic set. The computer storage is that required by the basic set.
Applications in flow networks and energy-economy models are briefly described.

A new quasi-Newton method for sparse matrices arising in various application areas is
presented in [4]. In this work sparse triple factorization is used to develop a rank two update.

A class of processes 151 have been found for solving second order boundary value problems
of the form y" = f(x,y), y(a)=A, y(b)=B. These do not require derivatives of f, and result
in nonlinear equations with blocked tridiagonal Jacobians. Specialized techniques have been
developed to derive the necessary formulas. The computation of the Jacobians for the dis-
cretized systems arising from the use of these formulas is expensive. This makes the ordinary
Newton iterations impractical. This paper contains various techniques for approximating and
splitting the Jacobians. These techniques are computationally inexpensive and lead to excellent
convergence.

An efficient method for handling systems with linear and non-linear subsystems is given in
161. In this method iterations are needed only for the solution of non-linear subsystems.

Cubic and quintic splines have been utilized in some of the methods for solving differential
equations developed by the investigators and others in the past . One of the crucial steps in
these techniques involves the solution of band systems. A very efficient general purpose scheme
for handling such band systems 171 has been developed. This scheme is also very useful for
block banded systems arising in a variety of applications.

A method of order eight that uses cubic splines on quintic splines for solving differential
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equations is described in [81.
The Principal Investigator has given invited papers based on some of the research resulting

from this grant at two international conferences 19,10). In 1111, we consider the numerical
solution of parabolic partial differential equations of Schrodinger type. Most conventional
explicit finite difference methods are unconditionally unstable for these problems. Use of explicit
Runge-Kutta methods with method of lines also yields unstable results. However, use of an
implicit method requires solution of complex systems of algebraic equations. Since, very little
is known about large complex systems as compared to real systems, explicit schemes would

.[ be preferred over implicit schemes. Also, most explicit schemes can easily be vectorized. In
[111, we consider the use of dissipative terms for deriving conditionally stable explicit single

*step schemes. We also consider use of a pair of methods in an alternating fashion for getting
more accurate results. Most of the methods considered in this paper can easily be extended
for more general Schrodinger equations.

In 1121, we consider the following singularly perturbed two-point boundary value

full + a(x) u' f f(x, u)
u(O) -go UO1 ) i

= g, u()= g.

We assume that a and f are sufficiently smooth functions and that a(x) a d > 0 on [0, 11.
Then using the usual splitting one can prove that for f sufficiently small, the solution of the
above problem can be represented as

u(x;E) = A(x;E) + B(x;e)exp[1 fa]

where A and B, and their derivatives up to an integer K can be bounded on [0,11 independently
of f. For subintervals [xi- 1 ,xi] and [zj,x,+1 ], we consider finite difference schemes of the

following form:
J

Uj= OU,..1 + bUi + jiU,+1  - 1'ff(k, (4) J11..,.
k=1

a..1Ui.1 + aou, + aui+1 =

where coefficients Oj, ,, /s, lik, 13j, a-, a0 , and a1 are chosen so that the scheme is exact

on a class of functions

1, z. ..... n , exp(- a), . exp ( _  a).

First, second and third order methods of this type have been tried on some test problems and
they exhibit the same uniform order of convergence as predicted by the theory.

In 1131, we consider linear complementarity problems having special structures. A large
number of free-boundary problems can be formulated as linear-complementary problems having
the properties discussed in this paper.

In 1141, a new definition of stability that characterizes the behavior of BVRK methods is
being developed.
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